28 research outputs found

    Intelligent nesting system

    Get PDF
    The economy of the process for the manufacture of parts from sheet metal plates depends on successful solution of the process of cutting various parts from sheet metal plates. Essentially, the problem is to arrange contours within a defined space so that they take up minimal surface. When taken in this way, the considered problem assumes a more general nature; it refers to the utilization of a flat surface, and it can represent a general principle of arranging 2D contours on a certain surface. The paper presents a conceptual solution and a prototypal intelligent nesting system for optimal cutting. The problem of nesting can generally be divided into two intellectual phases: recognition and classification of shapes, and arrangement of recognized shapes on a given surface. In solving these problems, methods of artificial intelligence are applied. In the paper, trained neural network is used for recognition of shapes; on the basis of raster record of a part's drawing, it recognizes the part's shape and which class it belongs to. By means of the expert system, based on rules defined on the basis of acquisition of knowledge from manufacturing sections, as well as on the basis of certain mathematical algorithms, parts are arranged on the arrangement surface. Both systems can also work independently, having been built on the modular principle. The system uses various product models as elements of integration for the entire system.

    Chloride and fluoride contents in flue gas during domestic lignite coals combustion as a parameter in the design of flue gas desulphurisation plant

    Get PDF
    Od nedavno polje istraživanja sagorevanja uglja obuhvata i istraživanje nečistoća, posebno halogenih elemenata (F, Cl, I i At). Emisije hlorida i fluorida iz procesa sagorevanja zavise od sadržaja i oblika ovih elemenata u uglju, procesa sagorevanja i opreme za smanjenje emisija. Ispitivanje sadržaja hlorida i fluorida u uglju i dimnom gasu je posebno značajno pri projektovanju postrojenja za odsumporavanje dimnog gasa, sastavnog dela modernih termoelektrana, koje obezbeđuje ispunjenje propisanih zahteva u pogledu emisije _O2. U okviru sistema za odsumporavanje dimnog gasa, prisustvo HCl može dovesti do povećanja potrošnje sorbenta, a HCl i HF imaju uticaj na preradu otpadnih voda. U ovom radu su prikazani dobijeni rezultati sadržaja hlora i fluora u domaćim lignitima i njihova koncentracija u dimnom gasu. Cilj istraživanja je bilo utvrđivanje referentnih koncentracija Cl i F u dimnom gasu koje će biti korišćene pri projektovanju postrojenja za odsumporavanje dimnog gasa. PR Projekat Ministarstva nauke Republike Srbije, br. III 42010.Recently, research in the field of coal combustion include impurities, specifically halogen elements (F, Cl, Br, I and At). Emission of chlorides and fluorides from the combustion depends on content and forms of these elements in coal, combustion process and emission reduction equipment. Examination of chlorides and fluorides content in coal and in flue gas is particularly important for design of flue gas desulphurisation plant, the integral part of the modern power plants which ensure meeting the requirements of SO2 emission regulations. In flue gas desulphurisation facilities, the presence of HCl may increase sorbent consumption and HCl and HF have the influence on wastewater treatment. This paper presents the results of chlorine and fluorine contents in domestic lignites and their concentration in flue gas. The aim of investigation was to determine the reference Cl and F concentrations in flue gas that would be used in the design of flue gas desulphurization plant

    Modeling devolatilization process of Serbian lignites using chemical percolation devolatilization model

    Get PDF
    Different mathematical models can describe coal devolatilization as the part of combustion process. Some models are simple, while others are more complex and take into account coal's complexity and heterogeneity of structure. A chemical percolation devolatilization model for describing the devolatilization process of two Serbian lignites from Kostolac and Kolubara open coal mines was studied. Results of the model were compared to devolatilization measurements obtained from two experimental methods - a wire mesh reactor and thermogravimetric analysis. Two coal samples with four different granulations were investigated for each lignite under different experimental conditions (different maximum temperatures and heating rates). Total volatile yields obtained from the wire mesh reactor and thermogravimetric analysis together with results predicted by the chemical percolation devolatilization model are presented and compared with literature data. For thermogravimetric analysis simulation, the chemical percolation devolatilization model yielded better results in cases where the kinetic parameters obtained under experimental conditions were used rather than kinetic parameters derived from predefined values in the model itself. For wire mesh reactor, the chemical percolation devolatilization model predictions of devolatilization were mixed and were dependent on temperature

    Modeling devolatilization process of Serbian lignites using chemical percolation devolatilization model

    Get PDF
    Different mathematical models can describe coal devolatilization as the part of combustion process. Some models are simple, while others are more complex and take into account coal's complexity and heterogeneity of structure. A chemical percolation devolatilization model for describing the devolatilization process of two Serbian lignites from Kostolac and Kolubara open coal mines was studied. Results of the model were compared to devolatilization measurements obtained from two experimental methods - a wire mesh reactor and thermogravimetric analysis. Two coal samples with four different granulations were investigated for each lignite under different experimental conditions (different maximum temperatures and heating rates). Total volatile yields obtained from the wire mesh reactor and thermogravimetric analysis together with results predicted by the chemical percolation devolatilization model are presented and compared with literature data. For thermogravimetric analysis simulation, the chemical percolation devolatilization model yielded better results in cases where the kinetic parameters obtained under experimental conditions were used rather than kinetic parameters derived from predefined values in the model itself. For wire mesh reactor, the chemical percolation devolatilization model predictions of devolatilization were mixed and were dependent on temperature

    Različiti pristupi za kreiranje geometrijskih modela anatomske osi femura i tijela femura

    Get PDF
    In today\u27s medicine, especially in the field of orthopedic surgery, it is very important to use geometrically accurate and anatomically correct geometrical models of human bones for the pre-operative planning and implants creation. In order to create such models, two new methods for geometrical modeling were developed and presented in this paper. These methods enable creation of femur anatomical axis and femur shaft geometrical models, and they are: GCM (Gravity Center Method), and CPM (Curve Projection Method). Both methods enable creation of geometrical models which are based on data acquired from the medical imaging devices (CT, MRI, X-Ray). The basic difference between these two methods and all the others is in the manner of generating the points through which anatomical axis model (3D curve) passes or goes near. The applied methods are developed considering the natural shape and anatomical landmarks of the femur bone, as well as standard CAD techniques for geometrical modeling which are common in engineering.U današnjoj medicini, osobito u području ortopedske kirurgije vrlo je važno koristiti geometrijski točne i anatomski ispravne geometrijske modele ljudskih kostiju za pred-operativno planiranje i kreiranje implantata. Radi kreiranja takvih modela dvije nove metode geometrijskog modeliranja su razvijene i prezentirane u ovom radu. Ove metode omogućuju kreiranje geometrijskih modela anatomske osi femura i tijela femura i one su: GCM (eng. Gravity Center Method), i CPM (eng. Curve Projection Method). Obje metode omogućavaju kreiranje geometrijskih modela koji se temelje na podacima dobivenih od medicinskih uređaja (CT, MRI, X-Ray). Osnovna razlika između ove dvije metode u odnosu na sve ostale je u načinu generiranja točaka kroz koje anatomska os modela (3D krivulja) prolazi ili je u blizini. Primijenjene su tehnike koje su razvijene uzimajući u obzir prirodni oblik i anatomske značajke femura. kao i standardne CAD tehnike za geometrijsko modeliranje koje su uobičajene u inženjerstvu

    Analysis of correlations of multiple-performance characteristics for optimization of CO2 laser nitrogen cutting of AISI 304 stainless steel

    Get PDF
    The identification of laser cutting conditions for satisfying different requirements such as improving cut quality characteristics and material removal rate is of great importance. In this paper, an attempt has been made to develop mathematical models in order to relate laser cutting parameters such as the laser power, cutting speed, assist gas pressure and focus position, and cut quality characteristics such as the surface roughness, kerf width and width of heat affected zone (HAZ). A laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of laser cutting parameters considered. 3 mm thick AISI 304 stainless steel was used as workpiece material. Mathematical models were developed using a single hidden layer artificial neural network (ANN) trained with the Levenberg– Marquardt algorithm. On the basis of the developed ANN models the effects of the laser cutting parameters on the cut quality characteristics were presented. It was observed that laser cutting parameters variously affect cut quality characteristics. Also, for the range of operating conditions considered in the experiment, laser cut quality operating diagrams were shown. From these operating diagrams one can see the values of cut quality characteristics that can be achieved and subsequently select laser cutting parameter values. Furthermore, the analysis includes correlations between cut quality characteristics and material removal rate. To this aim, six trade-off operating diagrams for improving multiple responses at the same time were given

    TOWARD AN INTEGRATED INFORMATION SYSTEM FOR THE DESIGN, MANUFACTURING AND APPLICATION OF CUSTOMIZED IMPLANTS

    Get PDF
    The adjustment of products to the needs of customers has been present in various industries for many years. Personalized medicine is a field that has been rapidly developing recently. This kind of medical help mainly implies the use of medications which are adjusted to each patient individually. In this paper, we describe an information system which manages the process of designing and manufacturing personalized products in the area of orthopaedics. The system output comprises patient-adjusted orthopaedic implants. In addition to the process management, the information system ought to enable the process to be adjusted to unexpected situations which may occur in different stages of designing and manufacturing. The information system should also assist doctors and engineers in the decision making process. This aid is realized in the form of the expert system which provides doctors and engineers with advice about defining an appropriate treatment for the patient

    Distal tibial pilon fractures (AO/OTA type B, and C) treated with the external skeletal and minimal internal fixation method

    Get PDF
    Background/Aim. Distal tibial pilon fractures include extra-articular fractures of the tibial metaphysis and the more severe intra-articular tibial pilon fractures. There is no universal method for treating distal tibial pilon fractures. These fractures are treated by means of open reduction, internal fixation (ORIF) and external skeletal fixation. The high rate of soft-tissue complications associated with primary ORIF of pilon fractures led to the use of external skeletal fixation, with limited internal fixation as an alternative technique for definitive management. The aim of this study was to estimate efficacy of distal tibial pilon fratures treatment using the external skeletal and minimal internal fixation method. Methods. We presented a series of 31 operated patients with tibial pilon fractures. The patients were operated on using the method of external skeletal fixation with a minimal internal fixation. According to the AO/OTA classification, 17 patients had type B fracture and 14 patients type C fractures. The rigid external skeletal fixation was transformed into a dynamic external skeletal fixation 6 weeks post-surgery. Results. This retrospective study involved 31 patients with tibial pilon fractures, average age 41.81 (from 21 to 60) years. The average follow-up was 21.86 (from 12 to 48) months. The percentage of union was 90.32%, nonunion 3.22% and malunion 6.45%. The mean to fracture union was 14 (range 12-20) weeks. There were 4 (12.19%) infections around the pins of the external skeletal fixator and one (3.22%) deep infections. The ankle joint arthrosis as a late complication appeared in 4 (12.90%) patients. All arthroses appeared in patients who had type C fractures. The final functional results based on the AOFAS score were excellent in 51.61%, good in 32.25%, average in 12.90% and bad in 3.22% of the patients. Conclusion. External skeletal fixation and minimal internal fixation of distal tibial pilon fractures is a good method for treating all types of inta-articular pilon fractures. In fractures types B and C dynamic external skeletal fixation allows early mobility in the ankle joint. [Projekat Ministarstva nauke Republike Srbije, br. III41017

    IMPLANT MATERIAL SELECTION USING EXPERT SYSTEM

    Get PDF
    Most certainly, in the field of medicine there is a great contribution of new techniques and technologies, which is reflected in an entire system of health care services. Customized implants are both fully geometrically and topologically adjusted so as to meet the needs of individual patients, thus making each implant unique. Their production requires joint efforts of a multidisciplinary team of different profile experts who combine their knowledge in the Implant knowledge model. Thus, we develop an expert system which should help or replace humans in the process of Implant material selection. This paper gives an overview of the expert system concept for the given problem. Its task is to carry out a selection of biomaterial (or class of material) for a customized implant. The model significantly improves the efficiency of preoperative planning in orthopaedics

    INTERPRETING THE MEANING OF GEOMETRIC FEATURES BASED ON THE SIMILARITIES BETWEEN ASSOCIATIONS OF SEMANTIC NETWORK

    Get PDF
    In this paper the method of semantic network analysis which enables semantic categorization of data in the network is presented. The main goal of network analysis is determination of the similarity of associations in semantic network based on similarity of attributes values of associations. The method allows highly efficient semantic categorization of new concepts, which does not depend on pre-planned inputs and predefined rules of deduction. Also, the concept allows different semantic interpretations of the same concept in different semantic contexts. As a specific example for demonstration of semantic categorization process, a part of mold manufacturing workflow was chosen
    corecore